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In order to better quantify two-phase flow regime transitions, a sensor is developed which measures the
electric capacitance of two-phase flows. A large number of experiments are done with air–water flow in a
9 mm ID horizontal tube. Based on a multivariate analysis, the most suitable sensor signal parameters are
selected for building a flow regime classifier. This classifier is based on a fuzzy c-means clustering algo-
rithm together with a regression technique. The output of the algorithm is used to create a probabilistic
flow regime map. A comparison between a visual classification based on high speed camera images and
the outcome of the flow regime classifier shows a remarkable agreement. The flow regime transitions are
further quantified and discussed based on the probabilistic information and the sensor signal character-
ization. Probabilistic mapping makes it possible to combine flow regime dependent correlations in the
two-phase flow models for heat transfer and pressure drop with smooth and appropriately quantified
transitions from one flow regime to another.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

When designing in-tube evaporators used in refrigeration and
air-conditioning, one has to deal with the complex phenomena of
two-phase flow during the phase change of the refrigerant from li-
quid to vapour. To accurately predict the heat transfer and pressure
drop, the flow phenomena should be incorporated in the design
models (Thome, 2004). Traditionally, this is achieved by classifying
two-phase flows into flow regimes: stratified flow, annular flow,
etc. These classifications are mainly based on visualizations (with
or without use of high speed cameras). But visual observations
are inherently subjective and do not provide quantitative informa-
tion such as typical frequencies or local vapour concentration.

Many types of flow pattern maps indicate the occurrence of
typical flow regimes in a specific coordinate system (superficial
velocities or mass velocity G and vapour quality x, etc.). Attempts
were made to create transition boundaries between these regimes
based on theoretical assumptions (Taitel and Dukler, 1976; Bar-
nea, 1987). But due to wide transition areas, these boundaries dif-
fer strongly between maps. More recently, this problem was
approached in a probabilistic way. Rather than purely classifying
a flow in a specific regime, the flow can be conceived as a com-
bination of different flow regimes. The importance of each of
the acting forces can be better described, especially in the transi-
tion areas and the chaotic flow types such as intermittent flows.
ll rights reserved.
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re).
Nino et al. (2003) introduced the probabilistic approach in multi-
port microchannels. Jassim and Newell (2006) applied probabilis-
tic flow regime mapping to predict pressure drop and void
fraction in microchannels. van Rooyen et al. (2007) used the same
approach for intermittent flows during condensation in macro-
scale tubes. Recently, Jassim et al. (2007) obtained probabilistic
two-phase flow data of R134a and R410A in single horizontal
smooth, adiabatic tubes by using an automated image recognition
technique. Several tubes were used with diameters ranging from
1.74 mm to 8 mm ID. Jassim (2006) developed generalized prob-
abilistic two-phase flow regime maps from this time fraction
data, which were used by Jassim et al. (2008a) for void fraction
modeling and by Jassim et al. (2008b) for heat transfer modeling
during condensation.

To gather quantitative and more objective information about the
nature of the two-phase flows, a lot of measurement techniques
were developed and successfully applied. Among them, pressure
transducers as well as optical or impedance probes are the most
common. Signal analysis provides valuable information on the sub-
tle differences in flow phenomena and makes it possible to build
quantifying classifiers with probabilistic data.

For this study, a capacitance sensor was developed and tested
with air–water flow (Canière et al., 2007). The sensor signals were
analyzed and a multivariate analysis of signal features was per-
formed. Three signal features were chosen to build a horizontal
two-phase flow classifier without any subjective visual decisions.
Probabilistic data was taken using a cluster algorithm. This infor-
mation quantitatively describes the width of the transition zones.
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Table 1
Results of the Fisher Criterion on the signal features.

Feature Fisher score Feature (Hz) Fisher score Feature (Hz) Fisher score

AVG 0.556 0.5–5 0.736 5–100 0.736
M2 1.238 5–10 0.114 10–100 1.122
M3 0.034 10–20 0.212 20–100 0.916
M4 0.022 20–40 1.052 40–100 0.514

40–60 0.612 60–100 0.321
60–80 0.361 80–100 0.219
80–100 0.219
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2. Experimental data

2.1. Capacitance probe and data acquisition

The capacitance probe has a concave electrode configuration. A
single pair of sensing electrodes is sided by two pairs of guarding
electrodes, one upstream and one downstream (Canière et al.,
2007). The output of the probe is a voltage signal proportional to
the electric capacitance of the two-phase mixture between the sens-
ing electrodes. To acquire (quasi)-local two-phase flow data, the
electrode width is equal to the diameter of the tube. The electronic
transducer used to convert the electric capacitance to a voltage sig-
nal is based on the charge/discharge principle (Yang and Yang, 2002).

The sensor was used for horizontal air–water flow in a small
diameter tube of 9 mm ID. The output voltage signal of the capac-
itance probe, Vsignal is made dimensionless using Eq. (1) with Vair

and Vwater the voltage output of air only and water only flow.

V� ¼ V signal � Vair

Vwater � Vair
ð1Þ

A series of 189 sensor signals was gathered, at different mass veloc-
ities of air (Gair = 0.3–50 kg/m2 s) and water (Gwater = 30–700 kg/
m2 s). The measurement uncertainties are described in Appendix
A. Each signal was classified into one of three flow regimes: strati-
fied flow (22 points), intermittent flow (104 points) and annular
flow (63 points). By using this three-category classification a dis-
tinction can be made between stratified and non-stratified flows
as well as a distinction between the ring-shaped annular flows
and the more complex flow structures of intermittent flows. Strat-
ified flow can have a smooth as well as a wavy interface. Intermit-
tent flow can be slug flow, plug flow, elongated bubble flow, etc. All
two-phase flows considered as intermittent flow have an irregular
or aperiodic flow structure and are therefore grouped together. Vi-
sual classification is difficult and subjective in nature, despite the
use of high speed camera images. Sensor signals analysis can pro-
vide quantitative and more objective criteria as will be shown.

2.2. Feature description

The sensor signals were gathered at a sample frequency of
1 kHz with a National Instruments DAQ system. From each signal,
several statistical features were mined. A first group consists of the
statistical moments of the sensor signal, i.e. the average value
(AVG), the variance (M2), the skewness (M3) and the kurtosis
(M4). These features determine the shape of the probability den-
sity estimation (PDE) of a signal and represent information of the
signal in the amplitude domain. A second group consists of fea-
tures in the frequency domain. The sensor signal is first trans-
formed using a discrete Fourier algorithm and a power spectral
density (PSD) is calculated. Based on this PSD, the contributions
of different bandwidths can be added to define a frequency feature.
The frequency range for gas–liquid interface phenomena is typi-
cally smaller than 100 Hz (Drahos and Cermak, 1989). Therefore,
only contributions of frequencies lower than 100 Hz are consid-
ered. The frequency range from 0.5 Hz to 100 Hz is split into sub-
ranges at 5, 10, 20, 40, 60 and 80 Hz. The power spectrum
contributions of the subranges (Eq. (2a)) result in a first set of se-
ven features in the frequency domain.

Fk ¼
PKkþ1

f¼Kk
PSDðV�ÞP100 Hz

f¼0:5 HzPSDðV�Þ
; with K ¼ ½0:5;5;10;20;40;60;80;100 Hz�

ð2aÞ

Fk ¼
P100 Hz

f¼Kk
PSDðV�ÞP100 Hz

f¼0:5 HzPSDðV�Þ
; with K ¼ ½5;10;20;40;60;80 Hz� ð2bÞ
A second set of six features in the frequency domain is determined
by the power spectrum contributions starting at, respectively, 5, 10,
20, 40, 60 and 80 Hz, up to 100 Hz (Eq. (2b)). Each of these thirteen
frequency features is normalized by dividing by the addition of all
contributions up to 100 Hz. In total 17 signal features are used in
the multivariate analysis. Remark that the sum of the components
0.5–5 Hz and 5–100 Hz is the constant one, and that both features
carry the same information.

2.3. Multivariate analysis

The seventeen signal features are investigated for their ability of
flow regime classification. First, a Fisher Criterion (Shawe-Taylor
and Cristianini, 2004) was applied. A Fisher discriminant Jii0(k) is
determined (Eq. (3)), with li(k) the mean of feature k of the data
points in class i and ri(k) the variance of feature k of the data points
in class i.

Jii0 ðkÞ ¼
liðkÞ � li0 ðkÞ
� �2

riðkÞ þ ri0 ðkÞ
ð3Þ

The score of the Fisher Criterion for a selected feature is then the
average of Jii0 for all combination of classes i and i0. This criterion
quantitatively determines whether a feature is able to separate
class i from class i0. The results are shown in Table 1. The features
with the highest Fisher Score are the variance (M2) and the fre-
quency feature with bandwidth 10–100 Hz. This frequency feature
is further called High Frequency Contribution Factor (HFCF) because
it excludes the contribution of slow slug flow phenomena and in-
cludes the contributions from phenomena with higher frequencies
such as interfacial waves. Wang et al. (1991) found typical peaks
at 0–5 Hz in the PSD of slug flows from local impedance measure-
ments of vertical air–water flow.

Secondly, a correlation coefficient CC (Eq. (4)) is calculated of every
feature, F, with the mass velocities of air and water. cov and var are
the covariance and variance respectively. The two features that cor-
relate best with Gwater are the AVG and the M2 (Table 2). The optimal
features with Gair are the HFCF and the AVG. The frequency features
do not correlate well with Gwater. The 0.5–5 Hz feature and the
5–100 Hz feature correlate almost as good with Gair as the HFCF.
But these features are strongly correlated to the HFCF.

CC ¼ covðF;GiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðFÞvarðGiÞ

p ; with i ¼ water or air ð4Þ

From the results of both tests, AVG, M2 and HFCF are found to be
most suitable for flow regime classification. When the same feature
selection procedure is applied to 100 permutations of 150 signals,
the same optimal features are found for 79% of the permutations.
In the other cases, the 5–100 Hz feature was selected, which is
strongly correlated to 10–100 Hz.

The flow regime classification potential of the selected features
is visualized in Fig. 1. On the diagonal of the plot matrix, a histo-
gram of the respective variable is shown. Every other subplot is a
scatter plot of the variables at the row and column index. Annular



Table 2
Correlation coefficients of the signal features with the mass velocities.

Feature CC (Gwater) CC (Gair)

AVG 0.755 0.781
M2 0.843 0.540
M3 0.389 0.305
M4 0.489 0.119

0.5–5 Hz 0.127 0.783
5–10 Hz 0.571 0.197
10–20 Hz 0.158 0.675
20–40 Hz 0.161 0.790
40–60 Hz 0.251 0.697
60–80 Hz 0.201 0.602
80–100 Hz 0.153 0.518

5–100 Hz 0.127 0.783
10–100 Hz 0.092 0.843
20–100 Hz 0.199 0.771
40–100 Hz 0.231 0.666
60–100 Hz 0.188 0.583
80–100 Hz 0.153 0.517
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flows typically have a high HFCF and low to intermediate values of
AVG and M2. Stratified flows have low to intermediate values of
AVG, but only low values of M2. The HFCF is spread over the full
range because both smooth and wavy stratified flows are present.
Intermittent flows have intermediate to high values of AVG and M2
and low to intermediate values of HFCF. Combining amplitude
information (AVG,M2) and frequency information (HFCF) makes
it possible to separate the flow regimes in the feature space. These
features are now used to build an objective flow regime classifier
and additional probabilistic flow regime information.
3. Statistical two-phase flow modeling

3.1. Fuzzy c-means clustering algorithm (Bezdek, 1981)

A clustering algorithm is an unsupervised learning method. The
goal of such a method is to deduce properties from a dataset, with-
out the help of a supervisor providing correct answers for each
observation. In the case of two-phase flow classification, no visual
decisions are needed. Clustering analysis tries to group a collection
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Fig. 1. Multivariate plot of signal features (blue open diamond, stratified; red filled circl
color in this figure legend, the reader is referred to the web version of this paper.)
of objects into subsets or clusters such that those within each clus-
ter are more closely related to one another than objects assigned to
different clusters. An object is a selection of input features deduced
from a sensor signal. The choice of these input features is funda-
mental to the clustering technique. In accordance with the multi-
variate analysis, the selected input features matrix I is
[AVG,M2,HFCF]. The choice of a dissimilarity measure between
two objects, the distance function, is a second important factor.
By far the most common choice of the distance function is the
squared or Euclidian distance D between two objects j and j0 (Eq.
(5)) with weight parameters w.

Dðj; j0Þ ¼ wAVG � ðAVGj � AVGj0 Þ
2 þwM2 � ðM2j �M2j0 Þ

2

þwHFCF � ðHFCFj �HFCFj0 Þ
2 ð5Þ

This is a weighted average of squared feature distances. Each object
is iteratively assigned to one cluster based on the minimization of
an objective function. Each of the weight parameters can be chosen
to set the relative importance of the features upon the degree of
similarity of the objects. The relative importance of each feature
is proportional to its variance over the data set. Setting wk =
1/(2vark) will cause each of the features to equally influence the
overall dissimilarity between pairs of objects (Appendix B.2). Vari-
ables that are more relevant in separating the clusters should of
course be assigned a higher influence in defining object
dissimilarity.

The fuzzy c-means clustering algorithm is a soft-clustering
algorithm. This means that each data point is assigned to a cluster
to some degree that is specified by a membership grade. This
makes it possible to describe the boundaries between clusters in
a smooth way. Since the aim of the signal clustering is finding a
probabilistic description of flow regime boundaries, this soft-clus-
tering algorithm is the preferred choice amongst other clustering
algorithms like k-means clustering or hierarchical clustering. The
mathematical implementation is more elaborately described in
the Appendix B.1.

3.2. Data regression

The output of the clustering algorithm is a centroid, ci, for every
cluster, together with a membership grade for every object to each
0 0.2 0.4 0.6 0.8
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M2

e, intermittent; green open square, annular). (For interpretation of the references to



−1
−0.5

0
0.5

1 −1
−0.5

0
0.5

1−1

−0.5

0

0.5

1

M2
AVG

H
FC

F

Fig. 2. Data clusters in features space from the test case.
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cluster. A centroid can be considered as typical or characteristic for
the specific cluster. In this application, the two-phase flow corre-
sponding with the cluster centroid is regarded as typical for that
flow regime. The membership grade is related to the distance be-
tween the object and each centroid in feature space and can thus
be considered as flow regime probabilities for that data point.

From the measurement points, an estimation of the cluster
membership grades is obtained for the 189 points in the Gwater–Gair

plane. To extrapolate the scattered data to continuous data in the
full plane, a regression technique is needed that creates a regres-
sion surface for every cluster. The probabilities are strongly non-
linear in the Gwater–Gair plane, so a linear regression is not suffi-
cient. A polynomial multivariate regression PR is compared with
e-Support Vector Regression (SVR) and m-SVR using radial basis
function kernels (Appendix C), (Schölkopf and Smola, 2002; Chang
and Lin, 2001). e-SVR and m-SVR gave similar results, so only e-SVR
is further considered. Standard settings of the parameters in the
regression technique (e = 0.1, r = 1/k = 1/3 and C = 1) are compared
with those obtained from a grid search evaluated by fivefold cross-
validation. The latter reveal a detailed structure of the probabilities
in the Gwater–Gair plane. This structure is not surprising because of
the complex connections between the three features and the air
and water mass velocities. In this study, the focus is on the global
structure of the inlet signals. Therefore standard settings are fur-
ther used. In the case of multivariate polynomial regression, the
degree of the polynomials is limited to two for the same reason.
After regression of all probability surfaces, normalization is per-
formed to obtain fractions in terms of percentage in the end.

The final step in building the flow regime classifier is applying a
maximum probability criterion to the probability surfaces to track
the transition boundaries in the Gwater–Gair plane. This means that
the flow regime boundaries are found at the intersection of the two
surfaces with the highest probability.

3.3. Test case results

A test case was run which divides the full data set in three clus-
ters. The Euclidian distance function was used and the selected
input feature matrix was I = [AVG,M2,HFCF] with all weight
parameters set to one. Fig. 2 shows the data points in feature space
after clustering into three clusters. Remark that there is no clear
distinction between the different clusters. A hard clustering algo-
rithm will therefore not give useful results. The data is directed
in three main directions. Each cluster centroid is directed into
one of these directions.

Fig. 3 shows the clusters of the test case in a Gair–Gwater map.
The solid lines are the boundaries found at the intersection of the
regression surfaces. The contours are the normalized probabilities
after regression and the scatter data indicate the division of the
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Fig. 3. Probability map with cluster points (blue closed circle, cluster 1; red open square
boundaries (left) SVR (right) 2nd order PR. (For interpretation of the references to color
data points into the three clusters. The clustering algorithm divides
the data points into clearly separable zones of the map and the
regression technique is able to track the boundaries between the
clusters in the mass velocity plane. Only a few data points are lo-
cated at the wrong side of the boundaries because of small errors
due to the smoothing characteristic of the regression. With SVR,
the root mean squared errors for each of the three probabilities
are 0.17718, 0.10837 and 0.13514. This is a little better than the
second order PR: 0.23108, 0.14513 and 0.16842.

3.4. Model parameters

3.4.1. Input features
The input features provide the cluster algorithm with the neces-

sary flow regime data and therefore have a major influence up on
the final probabilistic map. In Fig. 4, the result of the data process-
ing technique is shown when individual signal features are applied.
It is very unlikely that a single parameter can separate signals into
three meaningful classes. Therefore a 2-cluster classification was
executed.

The algorithm divides the signal data in two groups with a diag-
onal boundary when only AVG is applied. The AVG is a measure of
the void fraction and is therefore influenced by both air and water
mass fluxes. Using this parameter, the model can separate signals
with corresponding low void fractions from signals with corre-
sponding high void fractions. When time-averaged void fraction
is an important parameter for the desired flow classification, the
corresponding weight parameter should be set high.

Using only the M2 as input feature a more vertical boundary is
found at intermediate water mass flux (60–200 kg/m2 s). From the
multivariate plot in Fig. 1, it is clear that the variance has the po-
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in this figure legend, the reader is referred to the web version of this paper.)
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Fig. 4. Influence of input features: our visual classification data (blue open
diamond, stratified; red open circle, intermittent; green open square, annular)
and SVR cluster boundaries of individual features (red dashed line, AVG; blue dash-
dot line, M2; black solid line, HFCF). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this paper.)

Table 3
Variances and weight parameters by feature.

Feature Variance wk = 1/(2vark)

AVG 0.171 2.919
M2 0.285 1.753
HFCF 0.383 1.305
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Fig. 5. Probabilistic flow regime map with equally weighted input features: cluster
boundaries (solid), probabilities (contour) and our visual classification data (blue
open diamond, stratified; red open circle, intermittent; green open square, annular).
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this paper.)
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tential to separate stratified flows from intermittent flows. How-
ever, the boundary found by the algorithm does not fully coincide
with the visual stratified-intermittent flow transition, but is lo-
cated at higher mass fluxes. When a single water slug occurs every
few seconds, a second but small peak in the PDE of the correspond-
ing signal will appear at high V* (see Fig. 9). Because this peak is
small, it has only a limited influence on M2. Therefore flows with
water slugs occurring with low frequency are visually classified
as intermittent flow. But according to the algorithm, they show
more similarity with pure stratified flow, when only M2 is used
as parameter.

Applying the HFCF as input feature a quasi-horizontal boundary
is found around Gair = 10 kg/m2 s. This line coincides with the vi-
sual transition from annular to intermittent flow. The HFCF can
also separate smooth stratified flows from stratified-wavy flows.
As during the visual classification no distinction was made be-
tween these two flow types, the boundary tears across the strati-
fied flow area.

3.4.2. Weight parameters
To compare the influence of more than one feature the weights

should be set equal to wk = 1/(2vark) (see Appendix B.2). The data
set was first column-wise normalized so each feature is mapped
to a [�1,1] space. Then, the variances and the corresponding
weight parameters for equal influence of each feature were calcu-
lated (Table 3). Using these weight parameters, the influence of the
AVG is enhanced and the influence of HCFC is diminished com-
pared to the test case. According to the input feature analysis, this
should result in more diagonal boundaries. The new cluster cen-
troids are not anymore directed in three distinct direction but
are now almost in line. The result of using equally weighted input
features is shown in Fig. 5.

3.4.3. Number of clusters
When increasing the number of clusters, the clustering meth-

od still groups the measurement points in separable areas of the
flow map and the intersection of the regression surfaces agree
well with this grouping. This can be an interesting characteristic
for applications where more than three characteristic groups are
advisable.
4. Discussion

4.1. Coupling with heat transfer and pressure drop modeling

It is commonly accepted that flow regime mapping should be
included into two-phase flow modeling of heat transfer and pres-
sure drop. The probability map technique can be used for this pur-
pose (Jassim et al., 2007, 2008a, 2008b; Jassim, 2006). Rather than
purely classifying a certain flow into a single flow regime, flow re-
gime specific correlations can be combined in a probabilistic way
with smooth transition from one flow regime to another:

Prediction ¼
XNC

i¼1

PiðGair;GwaterÞ � FSCiðGair;GwaterÞ ð6Þ

with FSCi the flow regime specific correlation and Pi the correspond-
ing probability. For optimizing the results to a given application, the
weight parameters of the algorithm can be fitted to the data set. The
number of categories or flow regimes (NC) can also be chosen accord-
ing to the application and/or the fitting results. The resulting
probabilities and flow regime boundaries will of course differ with dif-
ferent input parameters corresponding with different applications.

4.2. Comparison with the visual classification and the Taitel–Dukler
map

In Fig. 6, a comparison is made between the boundaries found in
the test case and a visual classification (into stratified-intermit-
tent-annular flow) based on high speed camera images. The
boundaries found by the algorithm divide the flow map into three
zones, i.e. zone 1 in the lower left corner, zone 2 in the lower right
corner and zone 3 in the upper part of the flow map. Zone 3 con-
tains most of the observed annular flows and the stratified-wavy
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flows which are classified as stratified flow. Zone 1 contains all
smooth stratified flows and some intermittent flows with water
mass velocities lower than 200 kg/m2 s. Zone 2 covers intermittent
flows at higher mass velocities as well as some annular flows. The
boundary between zone 1 and zone 2 occurs at higher water mass
fluxes compared to the transition from stratified to intermittent
flow. However, during our visual classification of stratified flows
no liquid slugs were allowed at all. This was very strictly imposed
even when only one slug occurred every few seconds. The cluster
algorithm does not penalize that strict on slugs at very low fre-
quency for the settings used.

The clustering flow map is also compared to the theoretical flow
map of Taitel and Dukler (1976) (and modifications by Barnea et al.
(1983) and Barnea (1987)). Transition lines are drawn for a 9 mm
tube at atmospheric conditions of air and water (line A = strati-
fied/non-stratified boundary, line B = modified intermittent-strati-
fied boundary (Barnea et al., 1983), line C = smooth stratified/
stratified-wavy boundary and line D = annular-intermittent
boundary). There is a remarkable agreement in location and orien-
tation of the cluster boundary between zone 2 and zone 3 and the
Taitel–Dukler boundary D. The boundary between zone 1 and zone
3 converges with the Taitel–Dukler boundary A at low water mass
fluxes. The stratified-intermittent transition does differ with
Taitel–Dukler boundary.

If a better agreement with the visual classification is desired,
more flow regimes should be taken into account. Then, the algo-
rithm can try to separate different sub regimes in the intermittent
flow area, as well as make a distinction between smooth stratified
and stratified-wavy flows. The weight parameters can also be set to
optimize the agreement. But this was not an intension in this work.

4.3. Discussion of the probabilistic flow regime map for horizontal
two-phase flow

In Fig. 7, a probabilistic flow map is presented applicable to air–
water flow in horizontal smooth tubes of 9 mm ID at mass veloci-
ties ranging between Gair = 0.3–50 kg/m2 s and Gwater = 30–700 kg/
m2 s under near atmospheric conditions. Extrapolation beyond the
mass velocity ranges and to other tube diameters is not advisable.
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The settings of the test case were used to create this map. The
equations of the probabilities are given in Appendix D.

Some flow regimes and corresponding sensor signals are further
discussed. For every flow regime, the data point nearest to the clus-
ter centroid was selected. These points can be considered as typical
for the corresponding flow regime. The corresponding labels are S
for stratified, I for intermittent and A for annular flow. For each of
the transitions, a data point was selected as well. These points are
located on a straight line between the typical signals and close to
the cluster boundaries of the test case. The mass fluxes, signal fea-
tures and flow regime probabilities are listed in Table 4.

For every data point, three images of the flow were selected to
illustrate the typical flow phenomena. These images were captured
with a high speed camera at 260 fps. The dimensionless voltage of
the capacitance sensor is plotted vs. time as well as the probability
density estimation (PDE) and power spectral density (PSD) of the V*

signal. To better visualize the characteristics of the sensor signals,
the scale of the ordinate was not set equal in every plot. One should
keep this in mind when comparing different plots.

In the stratified flow signal (Fig. 8), an almost constant voltage
signal is typical. This corresponds with a constant liquid level that
can vary very slowly. The resulting PDE has a sharp peak and so a
very small variance M2. There is no important frequency content,
which makes the HFCF minimal.

When following a straight line on the flow map towards the
data point of intermittent flow, the water mass flux increases. Liq-
uids slugs appear which momentarily fill the entire cross section of
the tube with water. The sensor signal of the data point SI at the
transition boundary (Fig. 9) clearly indicates the presences of short
liquid slugs. In the PDE, a second but small peak appears at V* equal
to one and the PSD shows an important low frequency content
(<10 Hz). This signal would definitely be classified as slug flow.
According to the probabilities indicated in Table 4, this flow has
as much in common with the signal of stratified flow as with the
signal of intermittent flow (Fig. 10). The intermittent flow I has a
higher water mass flux. A typical double peak is visible in the
PDE. The most important contribution in the PSD has frequencies
lower than 10 Hz. In this chaotic type of flow, aerated liquid slugs
are present as well as air plugs, bubbles of all shapes and diameter
and geometrically very complex interface structures.
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Table 4
Selected signals, signal features and probabilities.

Flow regime Label Gwater Gair AVG M2 HFCF pS pI pA

Stratified S 49.04 2.96 0.479 4.66e�4 0.022 0.944 0.05 0.006
Intermittent I 601.78 2.99 0.643 4.44e�2 0.241 0.061 0.939 0
Annular A 83.33 48.91 0.147 2.72e�3 0.858 0 0 1
S-I transition SI 208.41 2.47 0.497 1.98e�2 0.182 0.482 0.518 0
I-A transition IA 226.56 11.28 0.476 2.28e�2 0.431 0.397 0.328 0.275
S-A transition SA 67.20 11.43 0.321 4.41e�3 0.311 0.606 0 0.394
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Following the trajectory towards annular flow, the liquid
bridges gradually break up and a central air core develops
(Fig. 11). The second peak in the PDE disappears and the HFCF in-
creases. This data point is located very closely to the intersection of
the three boundaries. Purely classifying this flow into one of the
typical flow regimes does not make a lot of sense in that area. This
probabilistic technique makes it possible to appropriately combine
all typical flow regime characteristics.

Going towards fully developed annular flow (Fig. 12), the peak
in the PDE moves to lower V* or higher void fraction. The peak gets
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sharper which results in a lower M2 value. The HFCF is higher than
all other signals because of the frequencies of the disturbances on
the ring-shaped interface. Finally going back to stratified flow, a
wavy type of flow (Fig. 13) is detected at the stratified-annular
transition boundary. The average signal value increases, as well
as the M2 value. Due to the smaller air mass flux, the liquid does
not reaches the top of the tube, but the air–water interface is still
not smooth. The HFCF gradually diminishes back towards almost
zero for stratified flows.

This discussion proves that the sensor can track the typical flow
phenomena of different flow regimes, characterized by the corre-
sponding time signal, PDE and PSD. The signal feature selection
in the multivariate analysis was successful. The flow phenomena
propagated well into the features. This is reflected in the outcome
of the clustering algorithm which pointed out typical flow regimes
in the flow map and quantitatively tracks the transition boundaries
without any visual intervention.
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5. Conclusions

In this study the signals of a capacitance sensor were analyzed
and processed to build a horizontal two-phase flow classifier with-
out any subjective visual decisions. From a multivariate analysis,
the average, the variance and a high frequency contribution factor
of the capacitance signals were found most suitable for separating
flow regimes.

The c-means clustering algorithm was applied together with
a regression technique to create objective flow regime transition
boundaries and deduce probabilistic flow regime data. This data
makes it possible to combine flow regime dependent correla-
tions in the two-phase flow models for heat transfer and pres-
sure drop with smooth and appropriately quantified transitions
from one flow regime to another. The influence of the different
model parameters on the algorithm outcome is mapped and
discussed.
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A probabilistic flow map for horizontal air–water flow in a 9 mm
tube (Gair = 0.3–50 kg/m2 s and Gwater = 30–700 kg/m2 s) is presented
to quantify the flow transitions between stratified, intermittent and
annular flow. These transition areas were further characterized and
discussed with sensor signals and high speed camera images.
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Appendix A. Measurement uncertainty analysis

A.1. Capacitance measurement

The capacitance transducer circuit was calibrated against fixed
capacitances (with uncertainties of 0.5% of value) in the range of
0–35 pF. A linear relationship of the capacitance with respect to the
output voltage is found. The coefficient of correlation is 0.995. The
uncertainty in the voltage measurements is 1.6% of full scale. The
accuracy of the DAQ system has a negligible effect upon the
measurements.
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A.2. Operating conditions

The accuracy of the air mass flow meter calibrated by the man-
ufacturer is 2% of reading. With an uncertainty of 100 lm on the
tube diameter of 9 mm, and air flow rates between 2 � 10�6 and
6 � 10�3 kg/s, the uncertainty on Gair is 3%. The water flow meter
was calibrated with a stopwatch-weighing technique using a pre-
cise balance and a large tank. The uncertainty on the measure-
ments of the calibration curve is ±0.002 kg/s. The uncertainty of
Gwater is 4.6% f.s. Temperature is measured at inlet of the sensor
with a type-K thermocouple with an accuracy of 0.1 �C. Pressure
is measured at the inlet with a relative pressure device up to
6 bar with ±0.05% accuracy.
Appendix B. Concepts of the fuzzy c-means clustering
algorithm

B.1. Fuzzy c-means clustering algorithm (Bezdek, 1981)

Consider a data set of N measurement points of K features: xkj

with k = 1,2, . . .,K and j = 1,2, . . .,N. In this application the features
are the sensor signal parameters AVG, M2 and HFCF. A distance
or dissimilarity dk(xkj,xkj0) is first defined between values of the
kth feature. The distance between two objects j and j0 is then:

Dðxj; xj0 Þ ¼
XK

k¼1

wk � dkðxkj; xkj0 Þ ðB:1Þ

This is a weighted average of the feature distances. By far the most
common choice of the feature distance is the Squared or Euclidian
distance:

dkðxkj; xkj0 Þ ¼ ðxkj � xkj0 Þ
2 ðB:2Þ

The user chooses a number of clusters (NC). The fuzzy c-means clus-
tering algorithm then starts with initial guesses for the centers of
each cluster, ci. Initial cluster fractions uij are assigned to each data
point in such a way that

XNC

i¼1

uij ¼ 1 ðB:3Þ

The algorithm minimizes an objective function Jm (Eq. (B.4)) based
on the distance between a data point xj and a cluster centroid ci:

Jm ¼
XN

j¼1

XNC

i¼1

um
ij kxj � cik2

; 1 6 m 61 ðB:4Þ

The parameter m (chosen at the default value 2 in this work) deter-
mines the smoothness of the cluster transitions. When m approaches
1, the cluster boundaries are sharp, when m approaches infinity, uij

becomes constant in a cluster. The values of uij and ci are iterated from
an initial value until convergence using Eqs. (B.5) and (B.6).

uij ¼
1PK

k¼1
kxj�cik
kxj�ckk

� � 2
m�1

ðB:5Þ

ci ¼
PN

j¼1um
ij � xjPN

j¼1um
ij

ðB:6Þ
B.2. Weight parameters (Hastie et al., 2001)

The input matrix of the cluster algorithm contains three sensor
signal parameters. For each of them, a weight parameter wk can be
chosen to set the relative importance of the features upon the de-
gree of similarity of the objects. It is important to realize that set-
ting the weight wk to the same value for each variable (every k)
does not necessarily give all features equal influence. The influence
of the kth feature, Xk, on the object dissimilarity D(xj,xj0) depends
upon its relative contribution to the average object dissimilarity
measure over all pairs of observations in the data set

D ¼ 1
N2

XN

j¼1

XN

j0¼1

Dðxj; xj0 Þ ¼
XK

k¼1

wk � �dk ðB:7Þ

with

�dk ¼
1

N2

XN

j¼1

XN

j0¼1

dkðxkj; xkj0 Þ ðB:8Þ

being the average dissimilarity on the kth attribute. Thus, the rela-
tive influence of the kth variable is wk � �dk and setting wk / 1=�dk

would give all attributes equal influence in characterizing overall
dissimilarity between objects.

In the case of K features and the Euclidian distance function, Eq.
(B.1) becomes

Dðxj; xj0 Þ ¼
XK

k¼1

wk � ðxkj � xkj0 Þ
2 ðB:9Þ

In this case Eq. (B.8) becomes

�dk ¼
1

N2

XN

j¼1

XN

j0¼1

xkj � xkj0
� �2 ¼ 2 � vark ðB:10Þ

where vark is the sample estimate of var(Xk). Thus the relative
importance of each such variable is proportional to its variance over
the data set. Setting wk ¼ 1=�dk for all features will cause each one of
them to equally influence the overall dissimilarity between pairs of
objects (xj,xj0). Although this may seem reasonable, it can be highly
counterproductive as well. If the goal is to divide the data into
groups of similar objects, all features may not contribute equally
to the notion of dissimilarity between objects. Some feature value
differences may reflect greater actual object dissimilarity. Variables
that are more relevant in separating the groups should be assigned
a higher influence in defining object dissimilarity.
Appendix C. Support vector regression

Consider a datavector xj with corresponding values yj. When
applying a linear regression technique, a straight line is searched
for under the condition that all data points must be as close as pos-
sible to that line. With multiple features, an optimal hyperplane
(Eq. (C.1)) is looked for (with hw,xi the dot-product of w and x)
(see Fig. C.1).

f ðxÞ ¼ hw; xi þ b ðC:1Þ

The deviation of y from f (x) of new samples x needs to be as small
as possible. This is achieved by optimizing the flatness, which can
be expressed as ||w||2. On the other hand, a sufficient accuracy is
also necessary by trying to keep all data points within a margin e
of the hyperplane. This causes the optimization problem, with tun-
ing parameters e and C:

Minimize
1
2
kwk2 þ C

X
i¼1

fi þ f�i
� �

ðC:2aÞ

Subject to
yi � hw; xii � b 6 eþ fi

hw; xii þ b� yi 6 eþ f�i
fi; f

�
i � 0

8><
>: ðC:2bÞ



Fig. C.1. Linear support vector regression.
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The optimal solution can be written as:

f ðxÞ ¼
X
i¼1

ai � a�i
� �

hxi; xi þ b ðC:3Þ

In general, a and a* can be uniquely determined. The algorithm and
the result only uses scalar products. When the data samples are
projected to another space u(x), then only hx1,x2i should be replaced
by hu(x1),u(x2)i = K (x1,x2). In this way, non-linear function can eas-
ily be fitted. The standard choice of kernel K in this work is a radial
basis function:

Kðx1; x2Þ ¼ exp �kx1 � x2k2

2r2

 !
ðC:4Þ
Appendix D. Probability functions

Eqs. (D.1)–(D.3) are the probability surfaces obtained with a
second order polynomial regression and under test case conditions.
These surfaces differ slightly from the SVR surfaces which are used
in this paper. The SVR surfaces are a better regression of the data
and are therefore preferred, but cannot easily be written in an ana-
lytical form. Eqs. (D.1)–(D.3) are applicable for air–water flows in a
9 mm tube with 30 kg/m2 s < Gwater < 700 kg/m2 s and 0.3
kg/m2 s < Gair < 50 kg/m2 s.

X1 ¼ 0:388 lnðGairÞ � 0:523 ðD:1aÞ
X2 ¼ 0:627 lnðGwaterÞ � 3:109 ðD:1bÞ

Y1¼0:652�0:199X1�0:313X2�0:55X2
1�0:221X2

2þ0:123X1X2

Y2¼0:315�0:215X1þ0:382X2�0:082X2
1þ0:261X2

2�0:020X1X2

Y3¼0:033þ0:414X1�0:070X2þ0:635X2
1�0:039X2

2�0:103X1X2

ðD:2Þ

Pstrat ¼
Y1

Y1 þ Y2 þ Y3
; Pint ¼

Y2

Y1 þ Y2 þ Y3
; Pann ¼

Y3

Y1 þ Y2 þ Y3

ðD:3Þ
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